Thread-based
Parallelism

In this chapter, we will cover the following recipes:

How to use the Python threading module
How to define a thread

How to determine the current thread

How to use a thread in a subclass

Thread synchronization with Lock and RLock
Thread synchronization with semaphores
Thread synchronization with a condition
Thread synchronization with an event

How to use the with statement

Thread communication using a queue
Evaluating the performance of multithread applications

The criticality of multithreaded programming

Thread-based Parallelism

Introduction

Currently, the most widely used programming paradigm for the management of concurrence
in software applications is based on multithreading. Generally, an application is made by a
single process that is divided into multiple independent threads, which represent activities
of different types that run parallel and compete with each other.

Although such a style of programming can lead to disadvantages of use and problems
that need to be solved, modern applications with the mechanism of multithreading are
still used quite widely.

Practically, all the existing operating systems support multithreading, and in almost all
programming languages, there are mechanisms that you can use to implement concurrent
applications through the use of threads.

Therefore, multithreaded programming is definitely a good choice to achieve concurrent
applications. However, it is not the only choice available—there are several other alternatives,
some of which, inter alia, perform better on the definition of thread.

A thread is an independent execution flow that can be executed parallelly and concurrently
with other threads in the system. Multiple threads can share data and resources, taking
advantage of the so-called space of shared information. The specific implementation of
threads and processes depends on the operating system on which you plan to run the
application, but, in general, it can be stated that a thread is contained inside a process and
that different threads in the same process conditions share some resources. In contrast to
this, different processes do not share their own resources with other processes.

Each thread appears to be mainly composed of three elements: program counter, registers,
and stack. Shared resources with other threads of the same process essentially include

data and operating system resources. Similar to what happens to the processes, even the
threads have their own state of execution and can synchronize with each other. The states of
execution of a thread are generally called ready, running, and blocked. A typical application of
a thread is certainly parallelization of an application software, especially, to take advantage
of modern multi-core processors, where each core can run a single thread. The advantage

of threads over the use of processes lies in the performance, as the context switch between
processes turns out to be much heavier than the switch context between threads that belong
to the same process.

Multithreaded programming prefers a communication method between threads using the
space of shared information. This choice requires that the major problem that is to be
addressed by programming with threads is related to the management of that space.

S E

Chapter 2

Using the Python threading module

Python manages a thread via the threading package that is provided by the Python
standard library. This module provides some very interesting features that make the
threading-based approach a whole lot easier; in fact, the threading module provides several
synchronization mechanisms that are very simple to implement.

The major components of the threading module are:

>

>

>

>

>

The thread object

The Lock object

The RLock object

The semaphore object
The condition object
The event object

In the following recipes, we examine the features offered by the threading library with different
application examples. For the examples that follow, we will refer to the Python distribution 3.3
(even though Python 2.7 could be used).

How to define a thread

The simplest way to use a thread is to instantiate it with a target function and then call the
start () method to let it begin its work. The Python module threading has the Thread ()
method that is used to run processes and functions in a different thread:

class threading.Thread (group=None,

target=None,
name=None,
args=(),
kwargs={})

In the preceding code:

>

group: This is the value of group that should be None; this is reserved for future
implementations

target: This is the function that is to be executed when you start a thread activity

name: This is the name of the thread; by default, a unique name of the form
Thread-N is assigned to it

Thread-based Parallelism

» args: This is the tuple of arguments that are to be passed to a target

» kwargs: This is the dictionary of keyword arguments that are to be used for the
target function

It is useful to spawn a thread and pass arguments to it that tell it what work to do. This
example passes a number, which is the thread number, and then prints out the result.

How to do it...

Let's see how to define a thread with the threading module, for this, a few lines of code are
necessary:

import threading

def function(i) :

print ("function called by thread %i\n" %i)
return

threads = []
for i in range(5):
t = threading.Thread (target=function , args=(i,))
threads.append(t)
t.start ()
t.join()

The output of the preceding code should be, as follows:

File Edit Shel Debug Options Windows Help

Pychon 3.3.0 (v3.3.0:bd8afba0ebf2, Sep 29 2012, 10:55:48) [M5C v.1600 32 bit (Int *
el}] en win3l

Type “copyright”, "credita®™ or "license()™ for more informaticn.

»> RESTART
b

function called by E
unecion called by
functicn called by
functicn called by
furction called by the
35

We should also point out that the output could be achieved in a different manner; in fact,
multiple threads might print the result back to stdout at the same time, so the output order
cannot be predetermined.

NEQ

Chapter 2

To import the threading module, we simply use the Python command:
import threading

In the main program, we instantiate a thread, using the Thread object with a target function
called function. Also, we pass an argument to the function that will be included in the
output message:

t = threading.Thread (target=function , args=(i,))

The thread does not start running until the start () method is called, and that join ()
makes the calling thread wait until the thread has finished the execution:

t.start ()
t.join ()

How to determine the current thread

Using arguments to identify or name the thread is cumbersome and unnecessary. Each

Thread instance has a name with a default value that can be changed as the thread is

created. Naming threads is useful in server processes with multiple service threads that
handle different operations.

How to do it...

To determine which thread is running, we create three target functions and import the
time module to introduce a suspend execution of two seconds:

import threading
import time

def first function():
print (threading.currentThread () .getName () +\
str(' is Starting \n'))
time.sleep(2)
print (threading.currentThread () .getName () +\
str(' is Exiting \n'))
return

def second function() :
print (threading.currentThread () .getName () +\
str(' is Starting \n'))
time.sleep(2)

Eis

Thread-based Parallelism

print (threading.currentThread () .getName ()+\
str(' is Exiting \n'))
return

def third function() :
print (threading.currentThread () .getName ()+\
str(' is Starting \n'))
time.sleep(2)
print (threading.currentThread () .getName ()+\
str(' is Exiting \n'))
return

if name == " main ":

tl = threading.Thread\
(name="'first function', target=first function)
t2 = threading.Thread\
(name="'second function', target=second function)
t3 = threading.Thread\
(name="'third function', target=third function)
tl.start ()
t2.start ()
t3.start ()

The output of this should be, as follows:

—
TPl e w0 e oD
File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bd8afb%0ebf2, Sep 29 2012, 10:55:48) [M5C v.1600 32 kit (Intel)] on win32 *
Type "copyright"™, "credits" or "license ()" for more information.

> RESTARRT
S5

first_function is Starting

second function is Starting

third function is Starting

first_ function is Exiting
second function is Exiting
third function is Exiting

x>

-

Ln:17|Col: 4

NED

Chapter 2

We instantiate a thread with a target function. Also, we pass the name that is to be printed
and if it is not defined, the default name will be used:

tl
t2
t3 = threading.Thread(target=third function)

threading.Thread (name="'first function', target=first function)

threading.Thread (name="'second function', target=second function)

Then, we call the start () and join () methods on them:

tl.start ()
t2.start ()
t3.start ()
tl.join()
t2.join()
t3.join()

How to use a thread in a subclass

To implement a new thread using the threading module, you have to do the following:

» Define a new subclass of the Thread class

» Overridethe init (self [,args]) method to add additional arguments

» Then, you need to override the run (self [,args]) method to implement what
the thread should do when it is started

Once you have created the new Thread subclass, you can create an instance of it and then
start a new thread by invoking the start () method, which will, in turn, call the run () method.

How to do it...

To implement a thread in a subclass, we define the myThread class. It has two methods that
must be overridden with the thread's arguments:

import threading
import time

exitFlag = 0

class myThread (threading.Thread) :
def init (self, threadID, name, counter):
threading.Thread. init (self)
self.threadID = threadID

Thread-based Parallelism

self.name = name
self.counter = counter
def run(self):
print ("Starting " + self.name)
print time (self.name, self.counter, 5)
print ("Exiting " + self.name)

def print time(threadName, delay, counter):
while counter:

if exitFlag:

thread.exit ()
time.sleep(delay)
print ("%s: %s" %\

(threadName, time.ctime(time.time())))

counter -= 1

Create new threads
threadl = myThread(l, "Thread-1", 1)
thread2 = myThread (2, "Thread-2", 2)

Start new Threads
threadl.start ()
thread2.start ()

print ("Exiting Main Thread")

When the previous code is executed, it produces the following result:

T ===

Eile Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bd8afb%0ecbf2, Sep 29 2012, 10:55:48) [MS5C v.1600 32 kit (Intel)] on win32 _:J
Type "copyright"™, "credits" or "license ()" for more information.

FEy RESTART
FrF

Starting Thread-1

Starting Thread-2

Thread-1: Sun Apr 12 15:42:00 2015
Thread-2: Sun Apr 12 15:42:01 2015
Thread-1: Sun Apr 12 15:42:01 2015
Thread-1: Sun Apr 12 15:42:02 2015
Thread-2: Sun Apr 12 15:42:03 2015
Thread-1: Sun Apr 12 15:42:03 2015
Thread-1: Sun Apr 12 15:42:04 2015
Exiting Thread-1

Thread-2: Sun Apr 12 15:42:05 2015
Thread-2: Sun Apr 12 15:42:07 2015
Thread-2: Sun Apr 12 15:42:09% 2015
Exiting Thread-2

Exiting Main Thread
>>>

-
Ln: 24|Col: 4

=)

Chapter 2

The threading module is the preferred form for creating and managing threads. Each thread is
represented by a class that extends the Thread class and overrides its run () method. Then,
this method becomes the starting point of the thread. In the main program, we create several
objects of the myThread type; the execution of the thread begins when the start () method
is called. Calling the constructor of the Thread class is mandatory—using it, we can redefine
some properties of the thread as the name or group of the thread. The thread is placed in the
active state of the call to start () and remains there until it ends the run () method or you
throw an unhandled exception to it. The program ends when all the threads are terminated.

The join () command just handles the termination of threads.

Thread synchronization with Lock and

RLock

When two or more operations belonging to concurrent threads try to access the shared
memory and at least one of them has the power to change the status of the data without

a proper synchronization mechanism a race condition can occur and it can produce invalid
code execution and bugs and unexpected behavior. The easiest way to get around the race
conditions is the use of a lock. The operation of a lock is simple; when a thread wants to
access a portion of shared memory, it must necessarily acquire a lock on that portion prior
to using it. In addition to this, after completing its operation, the thread must release the lock
that was previously obtained so that a portion of the shared memory is available for any other
threads that want to use it. In this way, it is evident that the impossibility of incurring races

is critical as the need of the lock for the thread requires that at a given instant, only a given
thread can use this part of the shared memory. Despite their simplicity, the use of a lock
works. However, in practice, we can see how this approach can often lead the execution to a
bad situation of deadlock. A deadlock occurs due to the acquisition of a lock from different
threads; it is impossible to proceed with the execution of operations since the various locks
between them block access to the resources.

Thread A Shared Variables Thread B
Thread A waits Thread B waits
for variable 1 . for variable 2
to be set by wait - set to be set by
Thread B Thread A
Thread A can't . Thread A can't
set variable 2 set - LS set variable 1

Deadlock

@l

